
Understanding Soil Fertility and Testing

Josh Michel Extension Field Agronomist Email: jjmichel@iastate.edu Cell: 563-581-7828 @jjmichel_crops

ISU Field Agronomists Across the State

https://www.extension.iastate.edu/ag/crops

Understanding Soil Fertility and Testing

Why is soil fertility important?

Why should we care about how much is being applied? Too Little vs Too Much

Why is testing important?

Soil Testing – identifying "what's in the bank"

- Soil test results relate to the probability that adding fertilizer will increase yield
- Soil testing has been proven reliable for pH, P, K, and Zn, but not very reliable for the other nutrients
- Soil testing isn't reliable for N; because of variable weather, biological and chemical processes that are constantly occurring in the soil.
- Ideally want to test at least once per crop rotation.

Crops don't care where the fertilizer comes from...

- Fertilizer
- Soil
- Manure
- Organic sources
- Sewage sludge

...as long as they get what they need when they need it.

Understanding Soil Fertility and Testing

- **1.** Definitions & crop nutrient removal
- 2. Soil sampling and Why it's important
- **3**. Send soil samples to a certified lab
- 4. Reading the soil test & interpret recommendations
- 5. Secondary and micronutrients
- 6. Soil pH and lime recommendations

- Soil test results for nutrients are provided in **ppm**
 - ppm P, where P = phosphorous
 - ppm K, where K = potassium
- Fertilizer recommendations are provided as **lb/ac**
 - Ib/ac P_2O_5 , where P_2O_5 = phosphate
 - Ib/ac K_2O , where K_2O = potash
- Fertilizer is sold as phosphate and potash

			Soil & P	State Univ Plant Analy rt for field	ysis Lab				G501 Agr Ames Iow soiltest@ (515) 294	va, 50011 iastate.eo	
									10/08/14		
Lang, Br	ian shington St								Client:		
Decorah	•		52101								
¥	Xte										
So	il T	es	t R	es	ult	S	\rightarrow	р	pn	า	
4° %				1						CI	urre Ifur
i X.	Lab Number	Client Sample ID	Organic Matter (%	Mehlich 3 Phosphorus dry analysis (ppm) (colorimetric)	או פופעומוש (AAS) ד (AAS)	(mq		Sikora Buffer pH			fa 13
N I	ab Nu	ient (rgani	Vehlich 3 Phosphoru analysis (p	y au AS)	Zinc (ppm)	Soil pH	kora		502	<i>stl</i>
4	<u>9</u> 169019	N1C	Ō n/a	호급 등 <u>의</u> 37 VH	<u>5 ⊄</u> 3 H	n/a	ഗ് 6.6	<u> </u> 7.0	-	Sh	1fur
	169020	C2A	n/a	34 VH	248 VH	n/a	6.1	6.9	SI	: 41	4. h
	169021 169022	S3A ANS	n/a n/a	24 H 27 H	135 L 241 VH	n/a n/a	6.5 6.6	7.0	- 5 5	souti	(.f
	109022	ANS	11/a	2711	241 11	11/a	0.0	7.0	1	strip	t
1]	Mons	anto
									ANS	= Nr	L S
	key: VL=Ve	ery Low L=	Low Opt	Optimum	H=High	VH=Ve	ry High	n/a=not		110	0 9
		Zinc: Low	00.4; Ma	arginal 0.5-	0.8; Adeo	quate 0.	9+			AD f	rt.
			FERTILI	ZER AND	LIME SU	GGEST	IONS			,.	
		•								et soil	
-e	rtII	ize	rк	(ec	S.	7		0./	ac	ECCE/a (for pH 6.5)	H 6.9)
L.	ple			ine	sanc	prog	ban	4 oil t	(for	(for p	ECCE/a (for pH
Lab Number	Client Sampl	ode	o/a)	⊖ K₂O (lb/a) fine	⊖ K₂O (lb/a) san	Zinc (lb/a) bros	Zinc (Ib/a) ban	Depth of Soil Neutralized	ECCE/a (foi	E/a	E/a
Nu	ant S	Crop code	o P ₂ O ₅ (lb/a)	qI) (ql) (ql) c	dl) c	oth c			00
		Cro	P ₂ C	K ₂ C	K ₂ C		Zinc		<u>a</u>	9	a
169019	N1C	10				n/a	n/a	6	0	0	1100 1900
169020 169021	C2A S3A	3	0	0 90	0 70	n/a n/a	n/a n/a	6	0	0	1900
169022	ANS	10	0	0	0	n/a	n/a	2	0	0	400
1	12				100						

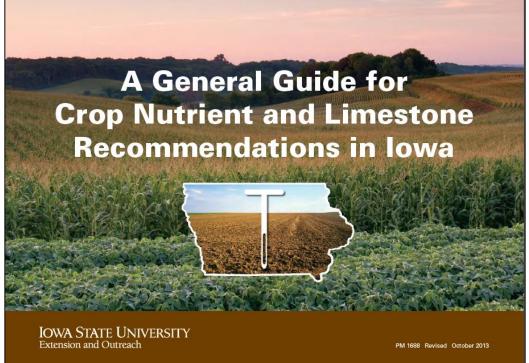
- Fertilizer analysis is a % of each nutrient
 - -%N %P₂O₅ %K₂O
 - If more #'s, the 4th is sulfate, the 5th is zinc
 - Often include an abbreviation of the nutrient
 - i.e. S = sulfur and Zn = zinc
 - Cannot add up to more than 100%

- Common forms of phosphorus fertilizer:
 - -MAP = Monoammonium Phosphorus = 11-52-0
 - DAP = Diammonium Phosphorus = 18-46-0

- Most common form of potassium fertilizer:
 - KCL = Potassium Chloride (Potash) = 0-0-60

- Pounds of fertilizer per acre = # of pounds of the complete product applied per acre
- Units of fertilizer = used more frequently to describe the # of pounds of the nutrient (i.e. phosphate, potash) applied per acre.

Example: I wanted to apply 60 units of potash (K₂O) per acre. To get that I needed to apply 100 pounds of 0-0-60 fertilizer.


Applying definitions

- You want to apply 15 lb/ac sulfur on your corn crop. Product choices include Ammonium sulfate (21-0-0-24), which is 24% sulfur; and Calcium sulfate (aka gypsum) (0-0-0-18) which is 18% sulfur. How much of each product would you use?
 - ✓ AMS: 15 lb/ac ÷ 0.24 = 62 lb/ac AMS, which also provides 13 lb/ac N

✓ Calcium sulfate: 15 lb/ac ÷ 0.18 = 83 lb/ac CaS

Crop Removal

 Estimate crop nutrient removal with Table 2 in PM 1688

PM-1688

Table 2.

Page 4.

Google the publication or go to:

https://store.extension.iastate.edu/Product/5232

Table 2. Nutrient concentrations to calculate removal amounts of P_2O_5 and K_2O in the optimum soil-test category.

Crop †	Unit of Yield and Moisture Basis	Pounds per Unit of Yield ‡		
		P₂O₅	K ₂ O	
Corn	bu, 15%	0.32	0.22	
Corn silage	bu grain equiv., 15%	0.44	1.10	
Corn silage	ton, 65%	3.5	9.0	
Corn stover	ton, 15%	4.8	18	
Soybean	bu, 13%	0.72	1.2	
Soybean residue	ton, 10%	4.7	23	

Example: Corn

200 bu/ac corn at 15% moisture would remove:

 $-P_2O_5$: 0.32 lb P_2O_5 /bu x 200 bu/ac = 64 lb P_2O_5 /ac

- $K_2O: 0.22 \text{ lb } K_2O/\text{bu x } 200 \text{ bu/ac} = 44 \text{ lb } K_2O/\text{ac}$

	,		
Perennial ryegrass	ton, 15%	11	30
Sorghum-sudan	ton, 15%	11	33

PM-1688

Table 2.

Page 4.

Google the publication or go to:

https://store.extension.iastate.edu/Product/5232

Table 2. Nutrient concentrations to calculate removal amounts of P_2O_5 and K_2O in the optimum soil-test category.

Crop †	Unit of Yield and Moisture Basis	Pounds per Unit of Yield ‡		
		P ₂ O ₅	K ₂ O	
Corn	bu, 15%	0.32	0.22	
Corn silage	bu grain equiv., 15%	0.44	1.10	
Corn silage	ton, 65%	3.5	9.0	
Corn stover	ton, 15%	4.8	18	
Soybean	bu, 13%	0.72	1.2	
Soybean residue	ton, 10%	4.7	23	
Oat	bu, 13%	0.29	0.19	

Example: Soybeans

- 50 bu/ac soybeans at 13% moisture would remove:
 - $-P_2O_5$: 0.72 lb P_2O_5 /bu x 50 bu/ac = 36 lb P_2O_5 /ac

 $- K_2O: 1.2 \text{ lb } K_2O/\text{bu x } 50 \text{ bu/ac} = 60 \text{ lb } K_2O/\text{ac}$

rerenniarryegrass	1011, 1570	11	30
Sorghum-sudan	ton, 15%	11	33

PM-1688

Table 2.

Page 4.

Google the publication or go to:

https://store.extension.iastate.edu/Product/5232

Table 2. Nutrient concentrations to calculate removal amounts of P_2O_5 and K_2O in the optimum soil-test category.

Crop †	Unit of Yield and Moisture Basis	Pounds per U P ₂ O ₅	nit of Yield ‡	
States in the second		P₂O₅	K₂O	

Example: Alfalfa

• 2 tons/ac alfalfa at 15% moisture would remove:

- $-P_2O_5$: 13 lb P_2O_5 /bu x 2 ton/ac = 26 lb P_2O_5 /ac
- K_2O : 43 lb K_2O /bu x 2 ton/ac = 86 lb K_2O /ac

Sunflower	100 lb, 10%	0.75	0.65
Alfalfa, alfalfa-grass	ton, 15%	13	43
Red clover-grass	ton, 15%	11	31
Trefoil-grass	ton, 15%	11	31
Smooth bromegrass	ton, 15%	7.9	41
Orchardgrass	ton, 15%	12	60
Tall fescue	ton, 15%	11	58
Timothy	ton, 15%	7.9	28
Perennial ryegrass	ton, 15%	11	30
Sorghum-sudan	ton, 15%	11	33

15

Looking at Crop Removal Rates

- 200 bu/ac corn removes 64 lbs P and 44 lbs K
- 50 bu/ac soybeans removes 36 lbs P and 60 lbs K
- 2 tons/ac alfalfa removes 26 lbs P and 86 lbs K
- Lots of "withdrawals from the bank"
- At a minimum we should be replacing these amounts

Maximize Economic Returns to Fertilizer Inputs

- 1. Definitions & crop nutrient removal
- 2. Soil sampling
- **3**. Send soil samples to a certified lab
- 4. Reading the soil test & interpret recommendations
- 5. Secondary and micronutrients
- 6. Soil pH and lime recommendations

2. Soil sampling

- A sample should represent an area of a field under similar conditions:
 - grid or zone sampling
 - make use of yield maps
 - soil map units (SMU), slope, drainage, crop history, manure, proximity to gravel road, etc.
- Absolute minimum of 10 cores per sample, prefer 12 to 15 cores per sample, and more cores per sample if there is more field variability (*i.e.* banding fertilizer).
- Sampling depth of 6" for corn/ soybean; 2-3" for pastures

ISU Extension publication CROP 3108

Take a Good Soil Sample to Help Make Good Fertilizer Decisions

https://store.extension.iastate.edu/product/3915

IOWA STATE UNIVERSITY Extension and Outreach Extension Store ISU | Contact Us | FAQ | Store Home Agriculture & Environment Families & Health **Business & Communities** Yard 8 Crops > Soil Management and Fertility > CROP 3108

removal

ne of the most important steps in soil testing is collecting soil samples. The soil sample is the first part of the soil sting process and the foundation for information derived from laboratory analyses, soil test interpretations, and ecommendations. Soil sampling is also the largest and most ommon source of errors in the soil testing process. Remember why soil samples are being taken - to obtain information on which recommendations and decisions concerning fertilizer, manure, and limestone application can be based.

comprehensive soil fertility and organic matter map for each field is desirable as a basis on which to adjust fertilizer, manure, and limestone application. Over- or under-treatment may reduce profits, cause nutrient supply issues, or increase chance of negative impact on water quality. Informed decisions can be made only if soil samples are representative of the areas sampled and accurately reflect differences in the field. Remember that just a few cores with a very small amount of soil will represent an area of the field. It is essential to select uniform areas to collect cores, and not mix contrastingly different field conditions into a sample, such as different soil series, slope, erosion, old fence ws, potholes, knolls, or nearby limestone roads.

When to sample

The best time to sample is during the time of the year for which soil test methods are calibrated, when there is time for good nutrient planning after receiving soil test results from the lab, and when the soil conditions allow for collecting good samples. Ideally, the best time would be after harvest and before fertilization. Do not sample shortly after a lime, fertilizer, or nanure application or when the soil is excessively dry or wet. Sampling at other times such as in the winter, and especially with ozen soil, is discouraged because results are not consistent with

Extension and Outreach

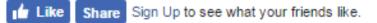
recommended sampling times and cannot be used with suggest interpretations. Field research calibrations for phosphorus (P), potassium (K), and pH soil tests are based on samples collecte in the fall or spring. Recent research suggests that samples taken in late spring or early summer, before around the V6 growth stage of corn or soybean, and when P, K, or lime were not applied in the spring or the previous fall, can provide reliable

results. Sampling at this time is too late to efficiently fertilize the current crop, but test results can be used for fall applications

when combined with current year yields for estimating P and K

Sampling using soil maps and management zones

Each sample should represent a uniform field area with similar past management. The sampling area should also represent a field area, or management zone, that can be managed in a similar fashion in regard to nutrient or limestone application and perhaps other crop production practices or inputs. Delineating separate crop management zones and soil sampling zones does not make sense if the entire field will be managed as a whole unit no matter the test results. Long histories of fertilizer, limestone, or manure application, especially with high application rates, may mask natural soil fertility differences due to soil properties and landscape position. However, organic matter levels are still closely related to soil map units. This is shown in Figure 1 when organic matter levels range from 1.5 to 10 percent in an 80-acre tract in the Clarion-Nicollet-Webster soil association. Soil pH patterns across fields sometimes are still dominated by variation of inherent soil properties rather than management of nutrient or limestone application. Examples are certain fields with the Clarion-Nicollet-Webster soil association and in far west-centra Iowa which contain soils with free lime (calcium carbonate).


Take a Good Soil Sample to Help Make Good Fertilization Decisions

A.P. Mallarino , John Sawyer

Learn more about the most important step in soil testing to make fertilization decisions collecting the soil sample. Includes information on materials needed, when to sample, how to select a sample area, how often to sample and much more.

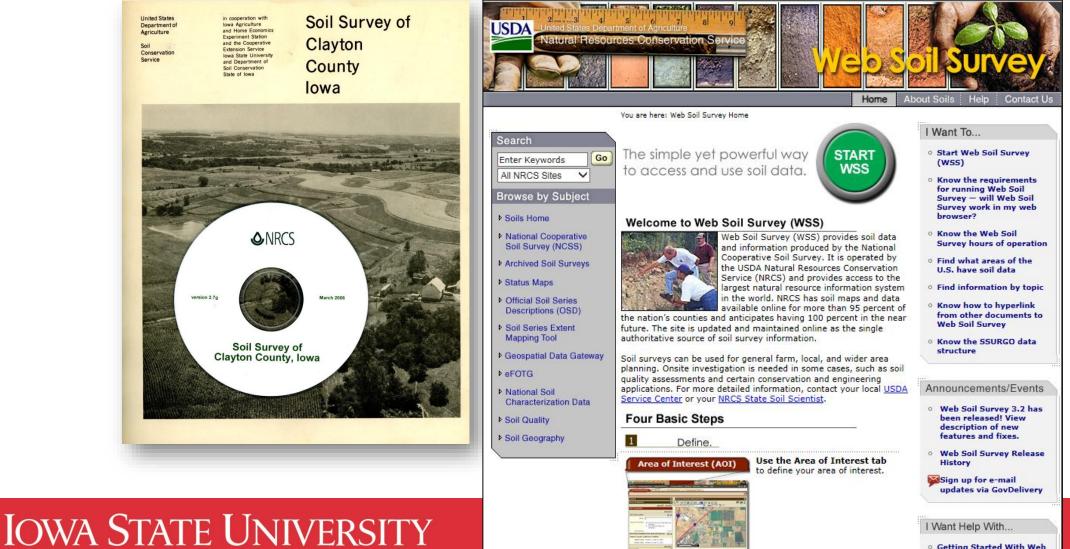
Pages / Length: 4 Publication Date: 12/2016

Format	Price	
PDF	\$0.00	Download

Permanent link for this product: https://store.extension.iastate.edu/Product/3915

Identify Areas of Fields to Soil Sample

Use a field map with the soil map units (SMU) outlined


- County Soil Survey book
- Web Soil Survey
- County assessors office?
- NRCS?
- Acrevalue.com
- Other sites?

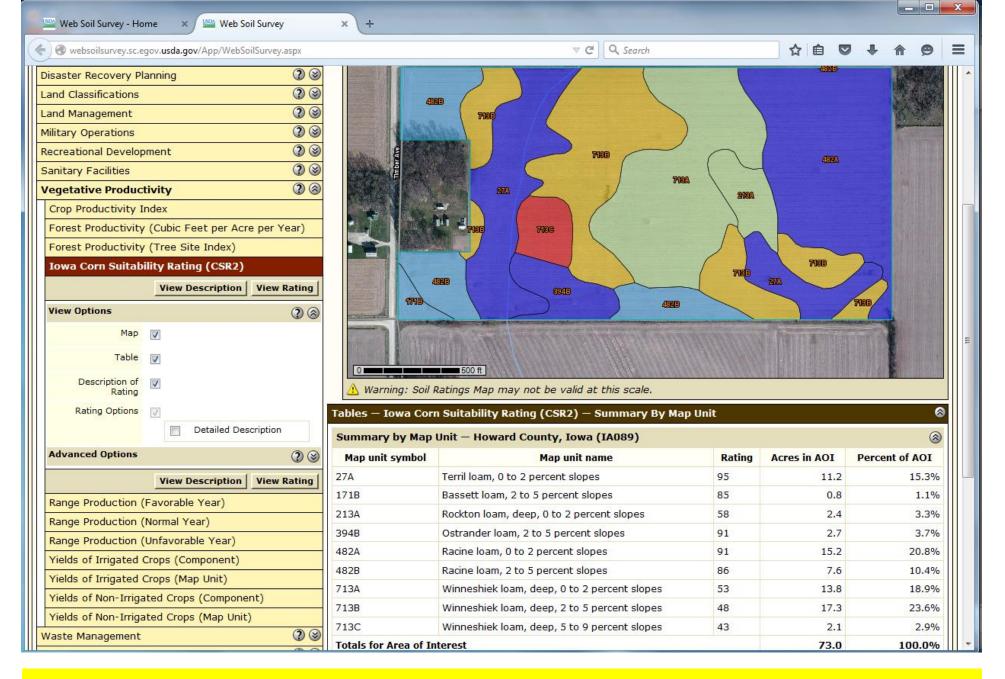
Soil Survey

Progressed from book to disc to on-line with the Web Soil Survey

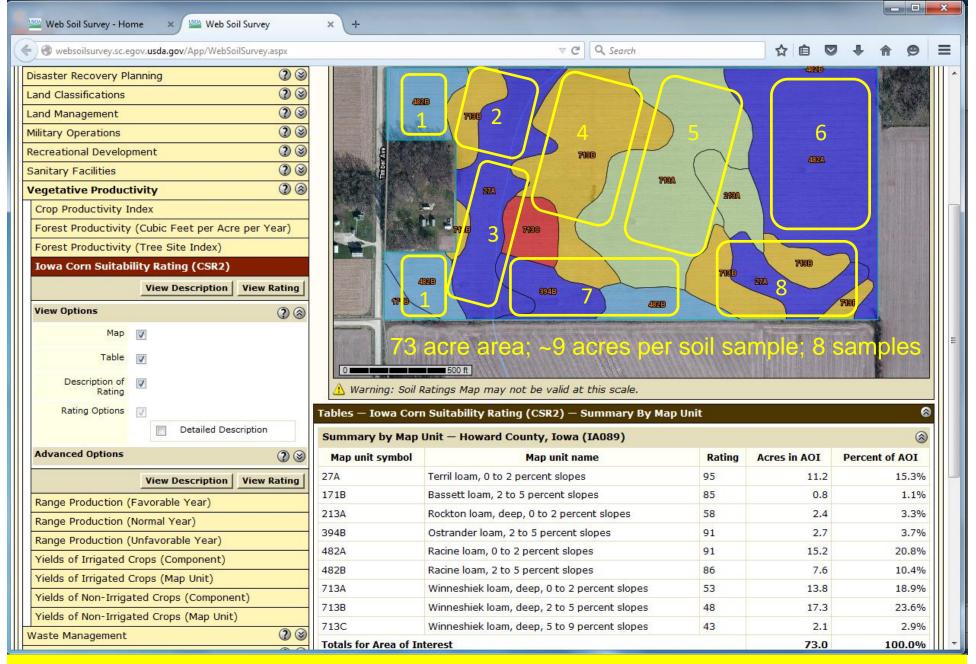
All future soil survey information will only be available on the Web Soil Survey

Extension and Outreach

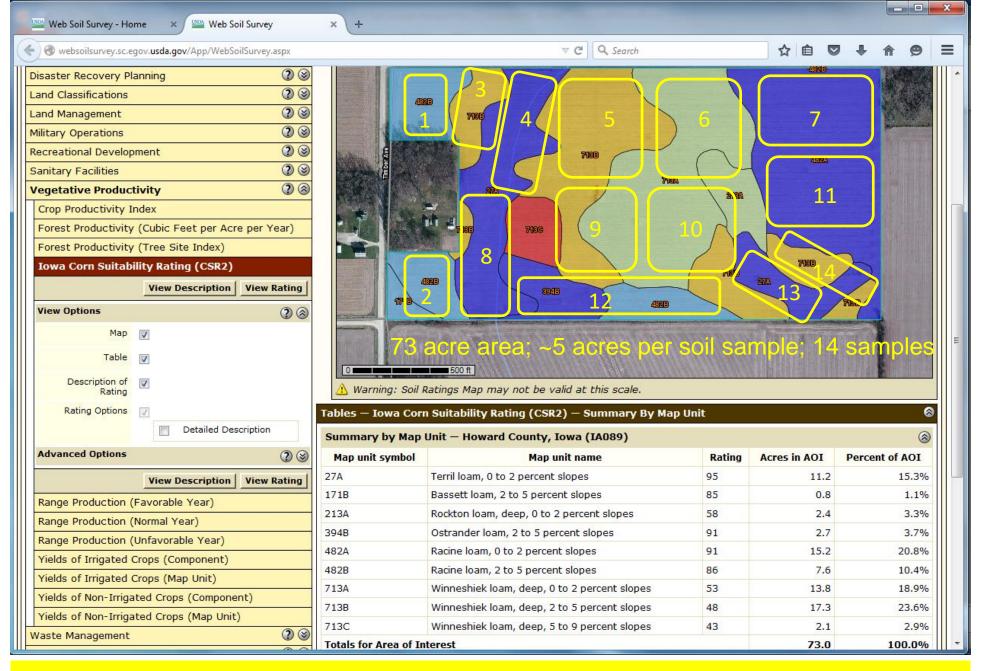
Click to view larger image.

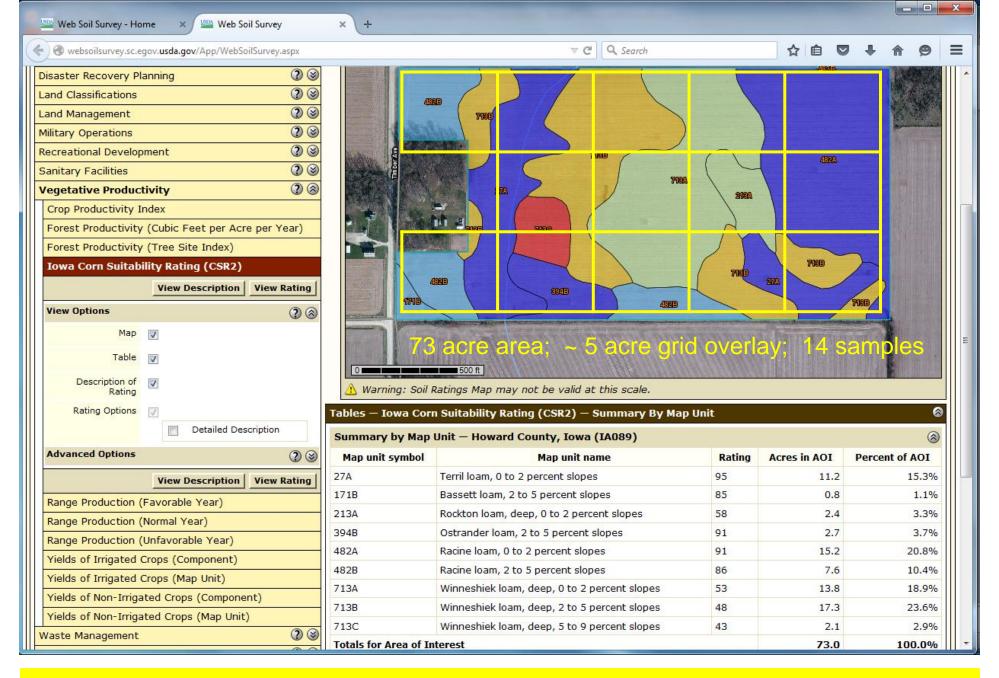

 Getting Started With Web Soil Survey

How to use Web Soil
 Survey


21

Tips for using the Web Soil Survey


- ISU Ag Decision Maker provides a tutorial for using Web Soil Survey to "Compute the Iowa Corn Suitability Rating for Your Farm," <u>https://www.extension.iastate.edu/agdm/wholefarm/html/c2-87.html</u>
- YouTube provides some "how-to" videos for using Web Soil Survey. Here is one: <u>https://www.youtube.com/watch?v=QRSipAAYQ1w</u>


Example from Web Soil Survey – with the CSR2 mapping option selected.

Example of 8 soil samples from somewhat similar areas averaging about 9 acres per soil test. We stayed in at least 100 feet from the limestone gravel road on the west side of the field.

Example of 14 soil samples averaging about 5 acres per soil test.

Example of 14 soil samples in a grid averaging about 5 acres per soil test.

Maximize Economic Returns to Fertilizer Inputs

- 1. Definitions & crop nutrient removal
- 2. Soil sampling
- **3.** Send soil samples to a certified lab
- 4. Reading the soil test & interpret recommendations
- 5. Secondary and micronutrients
- 6. Soil pH and lime recommendations

3. Send soil samples to a certified lab in accordance with IDALS standards

- The list of IDALS certified labs is at: <u>https://iowaagriculture.gov/commercial-feed-and-fertilizer-bureau</u>
- Results of each mineral (P, K, etc.) is provided in <u>parts per</u> <u>million</u> (ppm).

Image: State of the second						₿¢	Search	₽ - û ☆ ∰	63		
📼 Commercial Feed & Fertiliz 🗙 📑			https://i	owaa	gricul	ture.go	v/commer	cial-	feed-and-fertilize	er-bureau	
	Home	Within the	e Department	About	News	Contacts	Licensing Lists	More		Q	

Commercial Feed and Fertilizer Bureau

The goal of the Commercial Feed & Fertilizer Bureau of Iowa is to serve consumers by promoting an honest, equitable marketplace, and to encourage integrity in agriculture and industry through education and regulation. We serve as a resource for Iowans who need information about feed regulations, fertilizer licensing and additional compliance information.

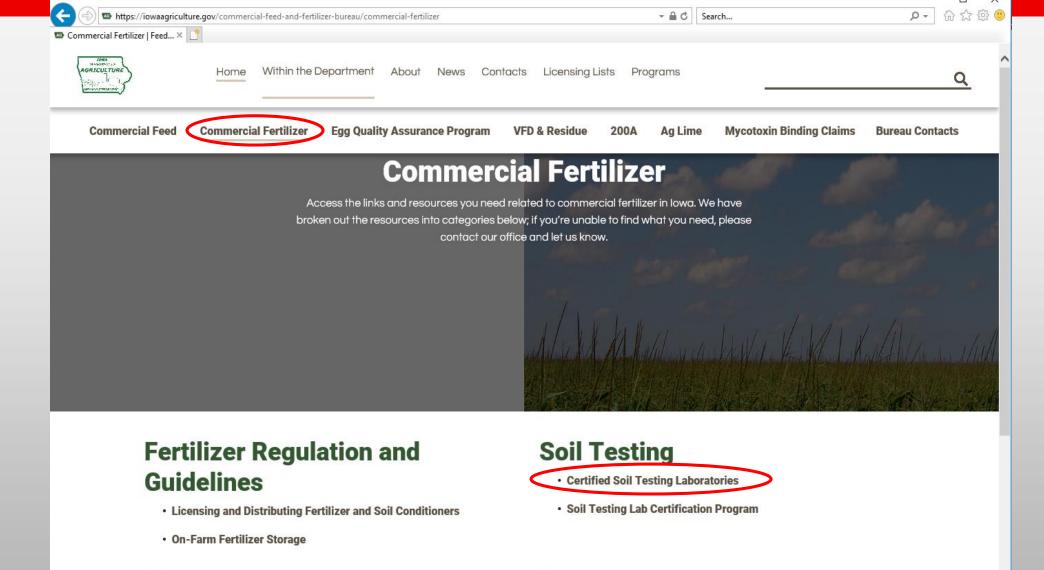
Commercial Feed Co

Commercial Fertilizer Eg

Egg Quality Assurance Program VFD & Residue 200A

Ag Lime More

Commercial Feed


Find the resources you need in relation to feed licensing, labeling and commercial feed reports. Feel free to **contact us** with additional questions or concerns.

FEED RESOURCES

Commercial Fertilizer

We have information available about aspects of commercial fertilizer, soil conditioners and regulations in Iowa. Check out our information about licensing, distribution, certified soil testing labs and more.

FERTILIZER RESOURCES

Licenses

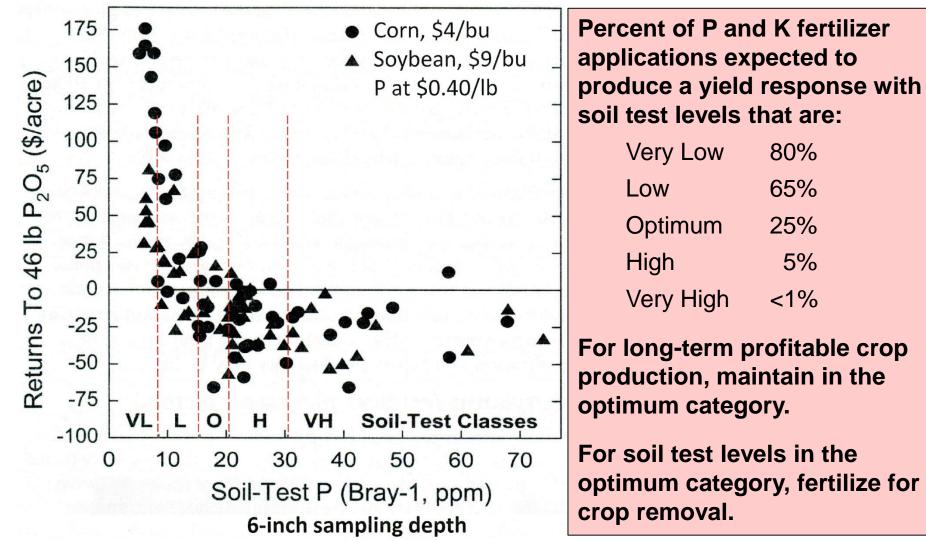
- Lawn Applicator Licensee List
- Commercial Fertilizer Licensee List

Reports

- Fertilizer Analysis Reports
- Fertilizer Distribution Reports
- Fertilizer Inspection Fee Report (Tonnage Report)

Decources

IOWA S


University

Anhydrous Ammonia Degulation

What do you need to soil test for?

- Soil pH and buffer pH for all crops, plus useful for some herbicide choices and rates
- P for all crops
- K for all crops (oven-dry or field-moist/slurry "wet" test)
- OM correlates to S and also is useful for some herbicide choices and rates
- Zn for corn mainly on calcareous or low OM soils
- B for alfalfa on low OM soils
- Soil tests for Ca, Mg, S, Fe, Cu, Mn; not reliable for making recommendations.

Returns to Cost of Fertilizer

Maximize Economic Returns to Fertilizer Inputs

- 1. Definitions & crop nutrient removal
- 2. Soil sampling
- **3**. Send soil samples to a certified lab
- 4. Reading the soil test & interpret recommendations
- 5. Secondary and micronutrients
- 6. Soil pH and lime recommendations

4. Read the soil test & interpretation recommendations

- Recommendations are provided as lb/ac of nutrient *i.e.* phosphate (P₂O₅), potash (K₂O).
- Certified labs are NOT required to use ISU fertilizer recommendations.
- Find the corresponding table in PM-1688 for the crop nutrient recommendations and needs

Phosphorus Dry or Field-Moist and Slurry Soil Tests (ppm)								
Soil Test Category	Very Low	Low	Optimum*	High	Very High			
Bray P ₁ and Mehlich-3 P	0–8	9–15	16–20	21–30	31+			
Olsen P	0–5	6–9	10–13	14–18	19+			
Mehlich-3 ICP P	0–15	16–25	26–35	36–45	46+			
	P ₂ O ₅ to apply (lb/acre)							
	100	75	58	0	0			
	Potassium Soil Tests (ppm)							
Soil Test Category	Very Low	Low	Optimum*	High	Very High			
Ammonium Acetate and	Mehlich-3 Exti	ractable K			-			
Dry	0–120	121–160	161–200	201–240	240+			
Field-moist and Slurry	0–50	51–85	86–120	121–155	156+			
		K₂O	to apply (lb/a	cre)				
Fine Textured	130	90	40	0	0			
Sandy Textured	110	70	40	0	0			

Table 3. Phosphorus and potassium recommendations for corn grain production.

*The recommended amounts of P_2O_5 and K_2O for the optimum soil test category are based on approximate nutrient removal for the harvested yield. The amounts shown in the table for the optimum soil test category are based on 180 bu corn grain per acre. Nutrient removal amounts can be adjusted higher or lower for other yield levels. In the high soil test category, banded NP or NPK starter fertilizer may be advantageous under conditions of limited soil drainage, cool soil, crop residues on the soil surface, or late planting dates with full-season hybrids.

Table 3. Phosphorus and potassium recommendations for corn grain production.Soil testSoil test= 15 ppm P & 165 ppm KISU recs= 75 lb./ac P2O5 & 40 lb./ac K2O

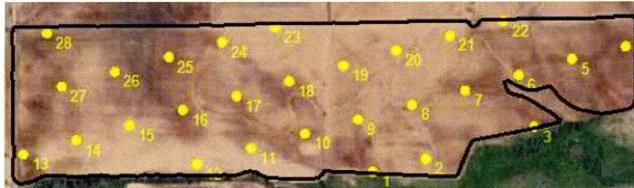
Phosphorus Dry or Field-Moist and Slurry Soil Tests (ppm)								
Soil Test Category	Very Low	Low	Optimum*	High	Very High			
Bray P1 and Mehlich-3 P	0–8	9–15	16–20	21–30	31+			
Olsen P	0–5	6–9	10–13	14–18	19+			
Mehlich-3 ICP P	0–15	16–25	26–35	36–45	46+			
	P_2O_5 to apply (lb/acre)							
	100	75	58	0	0			
	Potassium Soil Tests (ppm)							
Soil Test Category	Very Low	Low	Optimum*	High	Very High			
Ammonium Acetate and	Mehlich-3 Ext	ractable K			_			
Dry	0–120	121–160	161–200	201–240	240+			
Field-moist and Slurry	0–50	51–85	86–120	121–155	156+			
K₂O to apply (lb/acre)								
Fine Textured	130	90	40	0	0			
Sandy Textured	110	70	40	0	0			

*The recommended amounts of P₂O₅ and K₂O for the optimum soil test category are based on approximate nutrient removal for the harvested yield. The amounts shown in the table for the optimum soil test category are based on <u>180 bu corn grain per acre</u>. Nutrient removal amounts can be adjusted higher or lower for other yield levels. In the high soil test category, banded NP or NPK starter fertilizer may be advantageous under conditions of limited soil drainage, cool soil, crop residues on the soil surface, or late planting dates with full-season bybrids. Table 10. Phosphorus and potassium recommendations for alfalfa and alfalfa-grass hay and pastures.Soil test = 19 ppm P & 134 ppm KISU recommendations = 80 lb./ac P2O5 & 240 lb./ac K2O

Phosphorus Dry or Field-Moist and Slurry Soil Tests (ppm)									
Soil Test Category	Very Low	Low	Optimum*	High	Very High				
Bray P ₁ and Mehlich-3 P	0–15	16-20	21–25	26–35	36+				
Olsen P	0–10	10–13	14–16	17–19	20+				
Mehlich-3 ICP P	0–20	21–30	31–40	41–50	51+				
	P ₂ O ₅ to apply (lb/acre)								
	110	80 65		0	0				
Potassium Soil Tests (ppm)									
	L.	Potassi	ium Soil Test	s (ppm)					
Soil Test Category	Very Low	Potassi Low	ium Soil Test Optimum*	s (ppm) High	Very High				
Soil Test Category Ammonium Acetate and		Low			Very High				
		Low			Very High 240+				
Ammonium Acetate and	Mehlich-3 Ext	Low ractable K	Optimum*	High					
Ammonium Acetate and Dry	Mehlich-3 Ext 0–120	Low ractable K 121–160 51–85	Optimum* 161–200	High 201–240 121–155	240+				

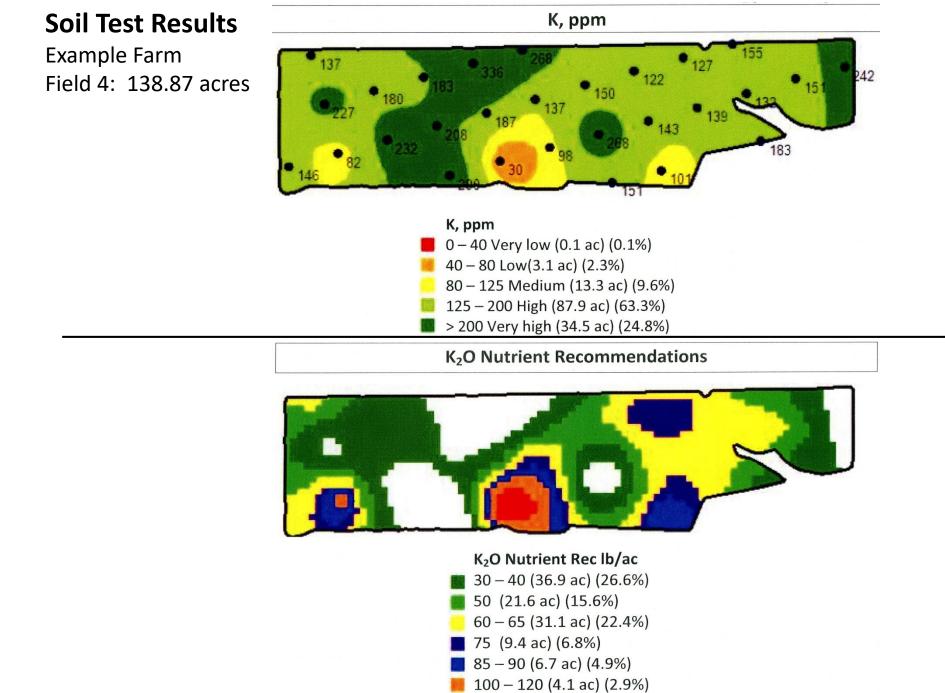
Footnotes explain Table 10 fertilizer recommendations are for 5 ton/ac of harvested hay.

Table 10. Phosphorus and potassium recommendations for alfalfa and alfalfagrass hay and pastures. What if the soil test = 220 ppm K?


Phosphorus Dry or Field-Moist and Slurry Soil Tests (ppm)									
Soil Test Category	Very Low	Very Low Low		High	Very High				
Bray P ₁ and Mehlich-3 P	0–15	16–20	21–25	26–35	36+				
Olsen P	0–10	10–13	14–16	17–19	20+				
Mehlich-3 ICP P	0–20	21–30	31–40	41–50	51+				
	P ₂ O ₅ to apply (lb/acre)								
	110	80	65 0		0				
		Potass	ium Soil Test	s (ppm)					
			Optimum* High						
Soil Test Category	Very Low	Low	Optimum*	High	Very High				
Soil Test Category Ammonium Acetate and			Optimum*	High	Very High				
			Optimum* 161–200	High 201–240	Very High 240+				
Ammonium Acetate and	Mehlich-3 Exti	ractable K	L						
Ammonium Acetate and Dry	Mehlich-3 Exti 0–120	ractable K 121–160 51–85	161–200	201–240 121–155	240+				

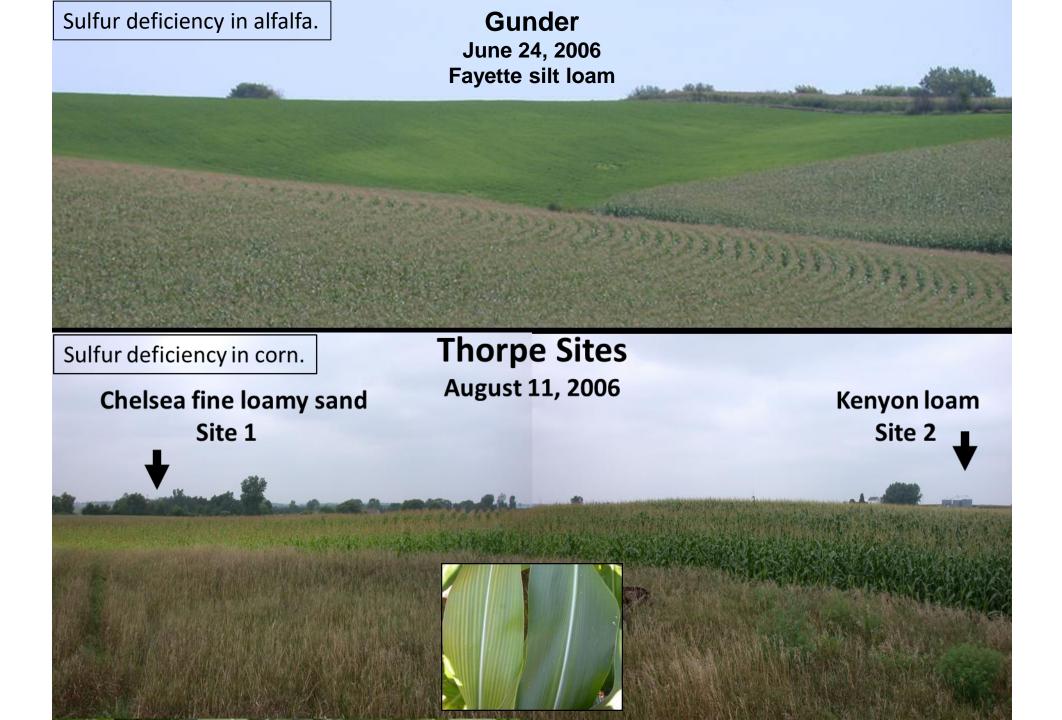
Footnotes explain Table 10 fertilizer recommendations are for 5 ton/ac of harvested hay.

Soil Test Results


Example Farm Field 4: 138.87 acres

Soil Test Points

-	Field Boundary Soil Test Points		
	Field Boundary Soil Test Points		


Field ID	K, ppm
4	242
5	151
6	132
7	139
8	143
9	268
10	98
11	30
12	290
13	146
14	82
15	232
16	208
17	187
18	137
19	150
20	122
21	127
22	155
23	268
24	336
25	183
26	180
27	227
28	137

130 – 140 (2.1 ac) (1.5%)

Maximize Economic Returns to Fertilizer Inputs

- 1. Definitions & crop nutrient removal
- 2. Soil sampling
- 3. Send soil samples to a certified lab
- 4. Reading the soil test & interpret recommendations
- **5.** Secondary and micronutrients
- 6. Soil pH and lime recommendations

Sulfur Management for Iowa Crop Production

ISU Extension publication CROP 3072 is available as a free pdf at: <u>https://store.extension.iastate.edu/product/14280</u>

Sulfur Fertilizer Recommendations in a Nutshell:

For corn:

- Soil and tissue tests are not reliable.
- Consider 10-15 lb./ac on most soils, but up to 25 lb./ac on sandy soils.

For soybeans: No recommendation.

For alfalfa:

- The soil test not reliable.
- The tissue test is fairly reliable.
 - Clip the top 6-inches of ~35 stems at bud stage and send to a lab for %S plant analysis.
 - If the test is lower than 0.23% S, fertilize with S.
 - Consider 20-25 lb./ac on most soils but up to 35 lb./ac on sandy soils.

Sulfur (5) is often classified as a "secondary" essential clement, mainly due to a smaller plant requirement, but also because it is less frequently applied as a fertilizer compared to nitrogen, phosphorus, and potassium. This was certainly the case in Iowa where research had not documented S deficiency or fertilization needed for optimal crop production. However, if deficient, S can have a dramatic effect on plant growth and crop productivity more than the classification "secondary" would imply.

Before 2005, over forty years of field research with corn and soybean conducted at many locations across lowa had measured a yield response to S application only three times out of approximately 200 trials—an indication of adequate available S supply and quite limited S deficiency. This began to nchange in the early 2000s as producers in northeast lowa began to notice yellow plant foliage and reduced plant growth in areas of alfalfa fields. After investigating several potential reasons, such as plant disease, demonstration of S fertilizer application showed improved coloration and growth of alfalfa in affected areas; see example in Figure 1. Several factors for why S responses have increased include reduced deposition with precipitation, fields with no manure application, higher crop yields, and low S content in commonly applied fertilizers.

IOWA STATE UNIVERSITY Extension and Outreach Alfalfa Response to Sulfur Fertilization In 2005, the observations of poor alfalfa growth and production led to research trials at several northeast lowa field sites. At each site 40 lbs S/acre applied as either ammonium sulfate or calcium sulfate (gypsum) was compared to a non-5 treated control in replicated plots. The S fertilizers were applied during the first crop growth prior to harvest, and in paired locations in established alfalfa that had exhibited poor growth/coloration and alfalfa that appeared normal in growth and coloration. The alfalfa yields from those trials (Table 1) documented a large increase (doubling of yield) from the S application in the poor growth areas, but no increase in the good growth areas. This yield response was also measured in the first cutting of the second year.

Figure 1. Demonstration of S fertilizer application showing improved coloration and growth of alfalfa in affected areas

CROP 3072 April 2015

Commercial Fertilizer Sources of Sulfur

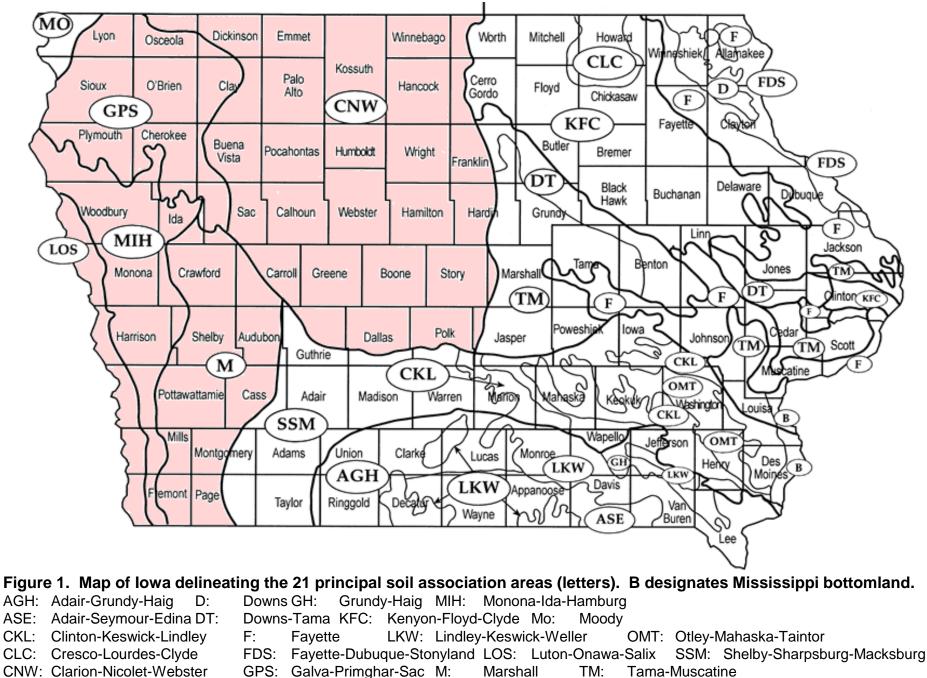
Sulfate-sulfur fertilizers are immediately available

Dry fertilizer	Chemical formula	Fertilizer analysis	Sulfur %
Ammonium sulfate	$(NH_4)_2SO_4$	21 - 0 - 0 - 24	24
Calcium sulfate (gypsum)	CaSO ₄	0 - 0 - 0 - 17	16-18
Potassium sulfate	K ₂ SO ₄	0 - 0 - 50 - 18	18-20
Potassium-Mg sulfate	K₂SO·2MgSO₄	0 - 0 - 22 - 23	23
Elemental sulfur	S	0 - 0 - 0 - 90	90
	navailable. Requires r y soil bacteria, influenc ture & moisture.		
Liquid fertilizer			
Ammonium thiosulfate	$(NH_4)_2SO_3$	12 - 0 - 0 - 26	26
50% sulfate-sulfur ar	nd 50% elemental sulfu	ur	

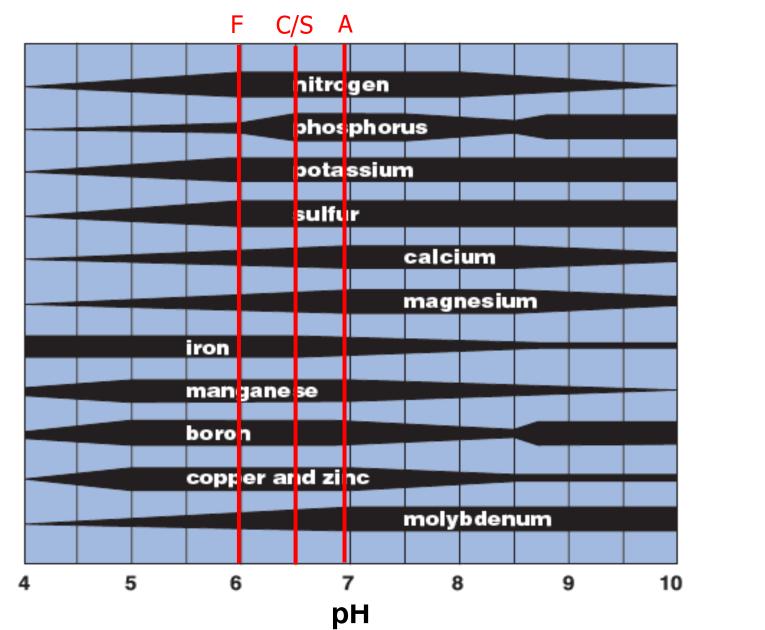
	Micronutrient	Soil Conditions	Most Sensitive Crops
(Boron (B)	Sandy or highly weathered soils low in organic matter, drought.	Alfalfa Clovers
	Copper (Cu)	Very sandy soils. Acid organic soils.	Corn Oats Wheat
	Iron (Fe)	Soil pH >7.0	Soybean
	Manganese (Mn)	Organic soils with pH >5.8 Mineral soils with pH >7.0	Oats Soybean Sugar beets Wheat
	Molybdenum (Mo)	Sandy or very acid soils (<5.5 pH)	Legumes
(Zinc (Zn)	Sandy or organic soils. Low organic matter soils due to erosion. Soil pH >7.0	Corn

Table 1. Traditional view of concerning likelihood of micronutrient deficiency

Corn and Soybean Yield Responses to Micronutrient Fertilization


Antonio Mallarino, Professor, Iowa State University Proceedings of the 26th Annual Integrated Crop Management Conference Ames, IA, Dec.3-4, 2014

- 65 field trials with corn and soybeans on foliar fertilization with B, Cu, Mn and Zn, and soil fertilization of B, Mn and Zn <u>did not increase grain yield at</u> <u>any trial</u>.
- 25 foliar fertilization strip trials with a mixture of B, Mn and Zn showed a yield increase in one soybean field and a yield decrease in one corn field.
- In contrast to lack of grain yield response, fertilization sometimes increased micronutrient concentration of plant tissue and in grain. No yield response to the micronutrient applications suggest the previous nutrient supply was sufficient.
- Lack of grain yield responses in Iowa to fertilization of micronutrients do not allow for establishing reliable soil or tissue test interpretations.


Maximize Economic Returns to Fertilizer Inputs

- 1. Definitions & crop nutrient removal
- 2. Soil sampling
- 3. Send soil samples to a certified lab
- 4. Reading the soil test & interpret recommendations
- 5. Secondary and micronutrients
- 6. Soil pH and lime recommendations

Shaded region includes significant areas with high pH subsoil (calcareous soils)

Available Nutrients in Relation to Soil pH

Table 16. Corn Example: Lime recommendations use Buffer pH to give lb/ac

Soil pH tells us if we need to apply lime... Buffer pH tells us HOW MUCH

<u>Target pH</u> alfalfa 6.9 other forages 6.0 corn & soybeans 6.5 (or 6.0 on calcareous soils)

Example:

6-inch soil depth Soil pH of 6.1 Buffer pH of 6.4 Lime for corn to 6.5 pH

6.5 Buffer = 3,500 lb.

Table 16. Lime recommendations based on SMP or Sikora buffer pH methods, given in pounds per acre of finely ground pure calcium carbonate (CaCO₃) to increase soil pH from its present level to pH 6.0, 6.5, or 6.9 for the soil depth to be neutralized.[†]

						-				
		Depth of Soil to be Neutralized								
			2 inches			3 inches			6 inches	
	46			3	Та	rget Soil	Soil pH			
В	Buffer pH	pH 6.0	pH 6.5	pH 6.9	pH 6.0	pH 6.5	pH 6.9	pH 6.0	pH 6.5	pH 6.9
			A	mount of	Calcium	Carbonate	e to Apply	(lb/acre)	‡	
	7.0	0	0	400	0	0	600	0	0	1,100
	6.9	0	0	600	0	0	1,000	0	0	1,900
	6.8	0	200	900	0	300	1,400	0	600	2,700
	6.7	0	400	1,200	0	700	1,800	0	1,300	3,500
	6.6	0	700	1,500	0	1,100	2,200	0	2,100	4,400
	6.5	100	900	1,700	100	1,400	2,600	200	2,800	5,200
	6.4	300	1,200	2,000	400	1,800	3,000	800	3,500	6,000
	6.3	500	1,400	2,300	700	2,100	3,400	1400	4,200	6,800
	6.2	700	1,700	2,600	1000	2,500	3,900	2000	5,000	7,700
	6.1	900	1,900	2,800	1300	2,900	4,300	2500	5,700	8,500
	6.0	1000	2,200	3,100	1600	3,200	4,700	3100	6,400	9,300
	5.9	1200	2,400	3,400	1900	3,600	5,100	3700	7,100	10,100
	5.8	1400	2,600	3,700	2200	4,000	5,500	4300	7,900	11,000
	5.7	1600	2,900	3,900	2500	4,300	5,900	4900	8,600	11,800

Table 16. Alfalfa Example: Lime recommendations use Buffer pH to give lb/ac

Soil pH tells us if we need to apply lime... Buffer pH tells us HOW MUCH

<u>Target pH</u> alfalfa 6.9 other forages 6.0 corn & soybeans 6.5 (or 6.0 on calcareous soils)

Example:

6-inch soil depth Soil pH of 6.6 Buffer pH of 6.9 Lime for alfalfa to 6.9 pH

6.9 Buffer = 1,900 lb.

Table 16. Lime recommendations based on SMP or Sikora buffer pH methods, given in pounds per acre of finely ground pure calcium carbonate (CaCO₃) to increase soil pH from its present level to pH 6.0, 6.5, or 6.9 for the soil depth to be neutralized.[†]

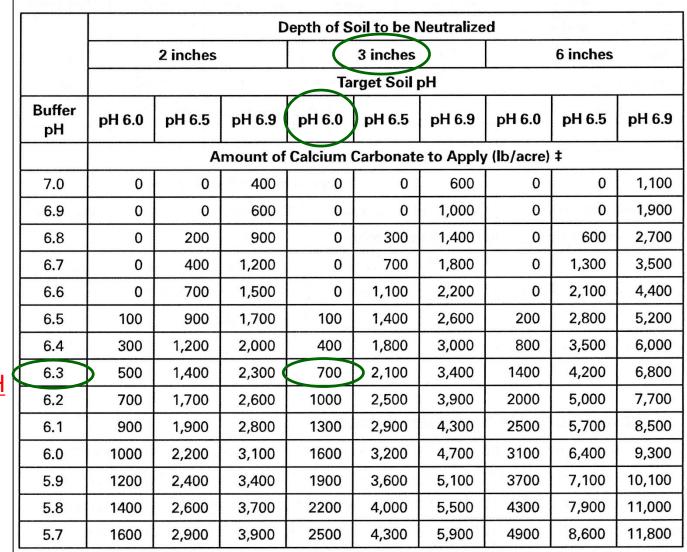
		<	C	epth of S	oil to be l	Veutralize	d	é batti na		
		2 inches			3 inches		(6 inches		
			3	Та	Target Soil pH					
Buffer pH	pH 6.0	pH 6.5	pH 6.9	pH 6.0	pH 6.5	pH 6.9	pH 6.0	pH 6.5	рН 6.9	
		A	mount of	Calcium	Carbonate	e to Apply	/ (Ib/acre)	‡		
7.0	0	0	400	0	0	600	0	0	1,100	
6.9	0	0	600	0	0	1,000	0	0	1,900	
6.8	0	200	900	0	300	1,400	0	600	2,700	
6.7	0	400	1,200	0	700	1,800	0	1,300	3,500	
6.6	0	700	1,500	0	1,100	2,200	0	2,100	4,400	
6.5	100	900	1,700	100	1,400	2,600	200	2,800	5,200	
6.4	300	1,200	2,000	400	1,800	3,000	800	3,500	6,000	
6.3	500	1,400	2,300	700	2,100	3,400	1400	4,200	6,800	
6.2	700	1,700	2,600	1000	2,500	3,900	2000	5,000	7,700	
6.1	900	1,900	2,800	1300	2,900	4,300	2500	5,700	8,500	
6.0	1000	2,200	3,100	1600	3,200	4,700	3100	6,400	9,300	
5.9	1200	2,400	3,400	1900	3,600	5,100	3700	7,100	10,100	
5.8	1400	2,600	3,700	2200	4,000	5,500	4300	7,900	11,000	
5.7	1600	2,900	3,900	2500	4,300	5,900	4900	8,600	11,800	

Table 16. Alfalfa Example: Lime recommendations use Buffer pH to give lb/ac

Soil pH tells us if we need to apply lime... Buffer pH tells us HOW MUCH

Target pH alfalfa 6.9

other forages 6.0


corn & soybeans 6.5 (or 6.0 on calcareous soils)

Example:

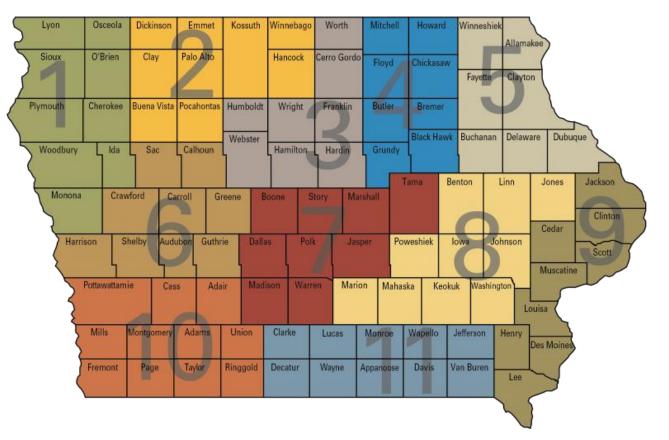
3-inch soil depth Soil pH of 6.0 Buffer pH of 6.3 Lime for pasture to 6.0 pH

6.9 Buffer = 700 lb.

Table 16. Lime recommendations based on SMP or Sikora buffer pH methods, given in pounds per acre of finely ground pure calcium carbonate (CaCO₃) to increase soil pH from its present level to pH 6.0, 6.5, or 6.9 for the soil depth to be neutralized.[†]

Josh's Soil Fertility "Order of Importance"

- 1. Take care of soil pH (typically the easiest and cheapest)
- 2. Address P and K concerns (ok to stair-step it)
- 3. Address Secondary Nutrients (Sulfur, Boron, Zinc)


-Going to be crop and situation dependent

Supporting resources:

- 1. CROP 3108, "Take a good soil sample to help make good fertilizer decisions" https://store.extension.iastate.edu/product/3915
- 2. Web Soil Survey: <u>https://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm</u>
- 3. Iowa Soil Properties and Interpretations Database (ISPAID): http://www.extension.iastate.edu/soils/ispaid
- 4. Iowa Department of Agriculture and Land Stewardship: Commercial Feed & Fertilizer Bureau (Certified soil testing labs; Ag limestone quarry report): https://iowaagriculture.gov/commercial-feed-and-fertilizer-bureau
- 5. "Some soil test information is important; Some isn't," handout by Dr. George Rehm, University of Minnesota <u>https://www.extension.iastate.edu/dairyteam/files/page/files/Some%20soil%20test%20information%20is%20</u> <u>important.pdf</u>
- 6. PM-1688, "A general guide for crop nutrients & limestone recommendations in Iowa" https://store.extension.iastate.edu/Product/5232
- 7. CROP 3072, "Sulfur Management for Iowa Crop Production" https://store.extension.iastate.edu/product/14280
- 8. Corn Nitrogen Rate Calculator: http://cnrc.agron.iastate.edu/
- 9. PM-1558, "How to sample manure for nutrient analysis" <u>https://store.extension.iastate.edu/product/5059</u>
- 10. PMR-1003, "Using manure nutrients for crop production" https://store.extension.iastate.edu/product/12874
- 11. PM 1941, "Calibration and uniformity of solid manure spreaders" https://store.extension.iastate.edu/Product/5536
- 12. AE 3600, "Distribution of liquid manure application" https://store.extension.iastate.edu/product/14891
- 13. AE 3601A, "Calibrating Liquid Tank Manure Applicators" https://store.extension.iastate.edu/product/6499
- 14. ISU Extension soil fertility home page: <u>http://www.agronext.iastate.edu/soilfertility/</u>

What Questions or Comments Do You Have?

ISU Field Agronomists Across the State

Josh Michel Extension Field Agronomist Email: jjmichel@iastate.edu Cell: 563-581-7828 @jjmichel_crops

https://www.extension.iastate.edu/ag/crops